
MATHEMATICS OF COMPUTATION 
VOLUME 49, NUMBER 180 
OCTOBER 1987, PAGES 479-498 

The Boundary Element Numerical Method for 
Two-Dimensional Linear Quadratic Elliptic Problems: 

(I) Neumann Control* 

By Goong Chen* * and Ying-Liang Tsai 

Abstract. For two-dimensional distributed control systems governed by the Laplace equation, 
the boundary element method is an efficient numerical method to solve problems whose 
quadratic cost involves boundary integrals only. In this paper we formulate a duality-boundary 
integral equation scheme and use piecewise constant boundary elements to approximate the 
problem. This method involves discretization of the boundary curve only and it can conveni- 
ently handle the compatibility constraint due to the Neumann data. Convergence and optimal 
error estimates 0(h) have been proved. Numerical data for the case of a disk are computed to 
illustrate the theory. 

1. Introduction. In this paper we apply the boundary element method (BEM) to 
compute boundary controls of two-dimensional linear quadratic problems governed 
by the Laplace equation. 

The Laplace equation models many physical processes such as equilibrium heat 
conduction, perfect incompressible irrotational flow, elastostatics, etc. A reasonable 
distributed control model is the following: Find an optimal flux (the Neumann data) 
on the boundary so that the corresponding observation on the boundary (the 
Dirichlet data) can be close to a given profile. To be specific, let us consider the 
following class of linear quadratic problems: 

(1.1) Inf J(y,u)= Iy(-;u)-zd, + Nu, u) 
u G L2( r ) 

governed by the Laplace equation with Neumann control, 

Ay(x; u) =O in Q, 
(1.2) iaay (x; u) =u(x) on F, 
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where 

, <, > are, respectively, the norm and the inner product in 
L'(F), 2 is a bounded convex open domain in R2, with 
(diameter M2) < 1, x = (xl, x2) E Q2, 

r is the boundary of S2, C' smooth, with nonzero curvature 
everywhere, 

A = +-is the Laplacian, 
(1.3) x12 2x2 

Zd E L2(r) is given, 
N is a positive definite symmetric operator on L2(F) 
satisfying 

(Nu,u) >a allU2|| forsome a > O,Vu E L2(F), 

v is the unit exterior normal on F, 

u E L2( F) is the distributed control. 

The above is similar to a problem mentioned by Lions in [6, p. 81] (where instead 
of the governing equation Ay = 0 he used (-A + a0)y = f for some a0 > 0 to 
assume the useful positive definiteness). It is easy to see that the theory in [6] applies, 
and problem (1.1), (1.2) has a unique optimal control uL E L2(r) minimizing J and 
satisfying the compatibility condition 

(1.4) fiu(x) da = O 

with corresponding state 

(1.5) -y( A.,) E- H3/2(2), 

where in the above and throughout the rest of the paper, HW denotes the Sobolev 
space of order r. 

We wish to develop numerical methods to treat the above. The problem is a 
two-dimensional PDE. For multi-dimensional problems, generally speaking, the 
amount of calculations grows exponentially with space dimension n. The associated 
numerical difficulty can often be awesome, and the number of operations is also 
burdensome for most computing hardware. 

The most commonly used numerical methods to solve PDEs are finite differences 
and finite elements. The former are relatively easy to use but work best when the 
domain has only straight edges as boundary. The latter involve extensive quadra- 
tures but are advantageous for domains with curved boundary. Both methods 
require careful discretizations of the entire domain. The efforts and labor involved in 
programming and testing computer codes are also proportionally large. 

Let us examine the special setting of our problem (1.1), (1.2): In (1.1) the cost 
functional involves only the state y and the control u on the boundary F; in the 
state equation Ay = 0, there is no distributed forcing term. Accordingly, can we 
approximate the optimal control and state on the boundary F only, without discretizing 
the entire domain Q? If affirmative, this would give us numerical solutions of ui and 
y on the boundary F, normally the most vital information we wish to obtain. 
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A satisfactory answer to the above is provided by BEM, the boundary element 
method. Indeed, using BEM we are fortunate here to avoid the "curse of higher 
dimensionality." 

The boundary element method is essentially a collocation method for solving 
integral equations only on the boundary of the domain in which the PDE is posed. 
Thus a reduction of spatial domain has resulted. In the past ten years, BEM has 
attracted the attention of applied mathematicians and engineers, and the method has 
been found very effective for many problems [1]. Nevertheless, to our knowledge, 
not many applications of BEM have been made to distributed parameter control 
problems. We hope to initiate a series of papers on the applications of BEM and 
computations of general multi-dimensional distributed parameter control problems. 

The outline of our paper is as follows. 
In Section 2 we first formulate the boundary integral equation approach. The 

primal problem is solved by the duality method through the use of a Lagrange 
multiplier. In Section 3 we introduce the BEM numerical scheme and discretize the 
dual problem. In Section 4 we prove the convergence of solutions. Optimal error 
estimates (9(h) for the optimal control and state and (9(h2) for the cost are obtained 
with piecewise constant boundary elements. In Sections 5 and 6 we present a 
numerical example and discussions. Numerical data indicate a convergence rate 
(9(h193) for the cost and a superconvergence rate (9(h' 93) for the optimal control 
and state, confirming the theory. 

2. The Duality Scheme Based on the Boundary Integral Equation Formulation. Let 
y satisfy (1.2) with Neumann data u. It is clear that a solution y of (1.2) exists if and 
only if u satisfies the compatibility condition (1.4). 

Let v(t I x) be the fundamental solution of the Laplace equation in R2 satisfying 

(2.1) -g Iv( lx) = + a%2 )v(lx) = ( - x), C E R. 

It is known [9] that 

lx) =-2lnIx-4 1, 

where I I is the length norm in R2: 

Ix - _I= [(X1 - 1)2 +(X2 - 42)2 /2. 

For x E I, upon using the double layer property, it is well known that 

1 
y(x) I7 J u(t) Inj x - t I da~ 

(2.2) ?Suj | X I', 

as F is assumed to be smooth. Thus we get a Fredholm boundary integral equation 
of the second kind, 

(2.3) y-Ky = Lu, 
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for the Dirichlet data y I of y (provided that u is given), where K and L are 
integral operators defined by 

(2.4) (Ky)(x) = I I a Ix_ 4j y(()da ~ E G 

(2.5) (Lu)(x)= - 
I 

u(() lnlx - ( I dao, x F. 

Their properties are indicated in the following two lemmas. 

LEMMA 2.1. Let s be the arc length parameter on F. Then 
(i) 

(2.6) (Ky)(x(s)) = f [-a-Ox(s(s))]y( (s)) ds, 

where / is the total arc length of F and Oj~) is the counterclockwise angle formed 
between xf and the tangent to F at x; cf. Figure 1. 

FIGURE 1 

The angle function O.(, 

Consequently, K and its adjoint K * are bounded linear Hilbert-Schmidt operators on 
L2(F) with C?-smooth kernels aSj ~(s))Ias and 3f4(s)(X)/3s, respectively, and 

(2.7) K, K*: Hr(F) - Co(F) Vr > 0. 
(ii) The entire spectrum of K consists only of 0 (in the continuous spectrum) and a 

simple eigenvalue 1 with corresponding eigenfunction 1, the constant. The restricted 
operators I - K, I - K * are invertible mappings, 

(2.8) I -K: [ker( I- K)] [ker( I- K* ], 

(2.9) I-K*: [ker(I-K*)] -> [ker(I-K)]1 
with bounded inverses defined on their ranges. 

Proof. See [2], [5], [8]. El 

LEMMA 2.2. The operator L is a positive definite weakly singular (hence compact) 
operator on L 2(F,) satisfying 

(2.10) L: H r(F) Hr+l(Fr) foranyr>0. 
Furthermore, there exists Yi > 1 such that 

(2.11) YlJ1 |gIL2(r) < JJLgIJH1(F) <$ Y71JgJJL2(f) 

for allg e L2(F). 
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Proof. See [5, Theorem 2]. 
Having at disposal the boundary integral equation (2.3), we now consider solving 

the linear quadratic problems (1.1) and (1.2). The differential constraints (1.2) are 
now replaced by the integral constraint (2.3). Thus, one now considers the following 
primal problem: 

Min J(Y, U) 

(2.12) ) (y, u) subject to 

(I-K)y = Lu, 
u 1 1. 

Here u must be chosen to be orthogonal to 1, and as c e ker(I - K), the solution y 
could differ by any constant c. This is rather inconvenient. 

The dual scheme does not have any such disadvantage, as can be seen below. 
Let X E L2( F) be a Lagrange multiplier. Consider 

(2.13) Min JX(Y, U) = lY-Zd 
12 + (Nu, u) + (X, (I-K)y-Lu). 

Y, ueL2(r) 

A simple variational analysis gives the unique minimizing solution (Y'X, Ui) of (2.13) 
satisfying 

(2.14) (2(Y - Zd)+ (I - K)*X = 0, 

( 2NUi - L*X = 0. 

Thus, 

(2.15) 1Y= =4N AL 
UX = 2 N- L*X = 2 N- LX . 

Substituting (2.15) into Jx in (2.13), we get 

JA -J9, UA) = - a(X, X) + 28O(X) 

= 1 (I-K*)X 112 _(N-1LX, LX) + (X, (I -K)Zd) 

where a is a bilinear form defined on L2(r) X L2(JF) by 

a (w1,w2) ((I - K*)w,, (I - K*)w2) + (N-1Lw, Lw2) 

and 0 is a linear form on L2(TF) defined by 

0(w) = 2(w,(I - K)Zd) 

Now the dual problem becomes 

(2.16) Max Jx. 
X L2(r) 

LEMMA 2.3. There exists y2 > 1 such that for all w, wI, w2 e L2(r) 

(2.17) 'Y2_ 11 W 112<, a(w, W) <1 7211 W12 

and 

(2.18) la (w,, w2) | < Y211 WI 11 1 W2 11- 
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Proof. Let F be any finite-dimensional subspace of L2(T). Then by (1.3) and 
(2.11) there exists cl > 1 such that 

(2.19) cjlIlwIl2 < (N-Lw, Lw) < c'IjwjJ VW e F. 

This constant cl depends on F only. 
Since I - K * is invertible with bounded inverse on [ker(I - K)]l, there exists 

c2 > 1 such that 

C2 |Wl2 < ((I - K)*w, (I-K) - W 
(2.20)2 

<( c211w II Vw E [ker(I - K*)] 

We can choose F = ker(I - K *). Combining (2.19) and (2.20), we conclude 
(2.17). The rest is easy. E1 

THEOREM 2.4. The dual problem (2.16) has a unique maximizing solution X*. 
Furthermore, 5A* and HA* in (2.15) corresponding to X* are the unique optimal state 
and control for the problem (1.1) (1.2). 

Proof. The only thing we need to worry about here is whether HA* satisfies the 
orthogonality constraint (U*, 1) = 0 in (2.12). The rest follows from the standard 
minimax duality theory in mathematical programming. 

Since X* exists and solves (2.16), by calculus of variations, X* satisfies 

(2.21) -2 [(I-K)(I-K*) + LN-L]X* +(I-K)Zd = O. 

The bracketed operator above is invertible by Lemma 2.3, so 

(2.22) A* = 2[(I - K)(I - K*) + LN-1L] -'(I - K)zd. 

Let e be the natural layer of F [5] defined by 

f e(x)do = 1, Le= E = constant> Oon F. 

Then [5], 

(2.23) e E C??(F), e > 0 and e E ker(I-K*). 

Thus, , is orthogonal to 1 if and only if 

K(A*, 1) = EKE'x* F) = EKiUA* Le) = EKLiA*,e) = 0, 

i.e., if and only if LEA* is orthogonal to e. 

But by (2.15), iA = sNoLX*, SO 

2(KLfA*, e) = (LN-LX*, e) 

= K - (I- K)(I -K *)X* + 2(I - K)Zdd e) (by (2.21)) 

= -((I - K*)X*, (I - K*)e) + 2(zd, (I - K*)e) 

= 0, by (2.23). E 

Another useful by-product is the regularity of solutions below. 
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THEOREM 2.5. Assume that 

(2.24) Zd EEHr(r) forsomer > O 

and 

(2.25) N-': Hs(F) -* Hs(F) Vs: 0 < s < r + 1. 

Then we have the regularity of the optimal multipliers, state and control: 

X* E Hr(r), -x. E Hr+5/2(Q), A E Hr+1(F). 

Proof. We first verify that X* E Hr(F). From (2.21), 

(2.26) A* = (K + K*)X* -KK*X* + LN-lLX* + 2(I-K)zd. 

From the smoothing properties (2.7), (2.10) as well as (2.25), we see that the 
right-hand side of (2.26) lies in Hs(F) for s = min(2, r). 

If s = r, we have verified that X* E Hr(r).. If s < r, then s = 2. We apply the 
smoothing properties of K and L again to the right side of (2.26) and get 

X* e Hs(F), s =min(4, r). 

Continuing this indefinitely, we conclude X* E H r(r). 

Since uA = 2N-1LX*, by (2.10) and (2.25) we have iA* E Hr+l(F). 

Since y'x* is the solution of (1.2) corresponding to ux* we get Yx* E Hr?5/2(Q). 
E 

3. The Numerical Algorithm with Piecewise Constant Boundary Elements. We 
briefly introduce the boundary element numerical scheme with piecewise constant 
boundary elements. For a detailed account, the reader is referred to [4]. 

BEM is a collocation method to approximate the integral .equation (2.3). Let us 
divide F into meshes rh = { r F2,..., rn(h) }, h = maxl i < n(h)(length F1), as shown 
in Figure 2. On each mesh curve Fi, let us choose the midpoint xi as the nodal point. 
We assume that the mesh is uniform, i.e., there exists c > 0 for all h such that 

h < c min (length]?1). 
1 i ~i(h) 

1 

F. 
1 

FIGURE 2 
Piecewise constant boundary elements 
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Let us approximate y and u in (2.4) by piecewise constant functions Yh and Uh, 

where 

(3.1) (Yh = Yh (xi) _ l 
(3.1) 

~~~~Uh(X) = Uh (Xi) U 

for all xE J', and i = 1,2,...,n(h). Let 

Vh = the finite-dimensional space spanned by piecewise 
constant functions on Ph* 

Then (Yh, Uh) e Vh X Vh. Vh is known to satisfy the approximation property 

lim inf 11w - Vh =O, we L2(). 
h-0 hEL Vh 

(3.2) There exists a C > 0 for all h such that for any w E H1(T) 

inf 11 W - Vh II < ChO W IIH(r). 
Ih C Vh 

We find the approximate solution (Yh' Uh) by requiring that 

yi -(s))yds =nix, - [s)|u ds 

be satisfied for i = 1, 2, ..., n(h). Note here that we have used (2.6). The above gives 
a system of linear equations 

(3.3) -i, 7T , + E qjU1 = 01, i .= . n 
__1 j=1 

where 

?J - -|a ,(((s)) ds = the angle subtended by the arc 
(3.4) 

j 
Ja 

7,, centered at xI, cf. Figure 2; 

(3.5) q- lnIxX - ((s) Ids. 

Equation (3.3) is now written in matrix form, 

(3.6) (I - Kh)Yh = LhUh, 

where Kh and Lh are n X n matrices defined by 

Kh = i Lh = [-qlJ] nXn 

Kh and Lh induce two linear operators on Vh, which by abuse of notations are still 
denoted as Kh and Lh- 

In view of the fact that 

Ej 
= X, i =12, ... n, 

J=1 

we see that ker(I - Kh) contains an eigenvector (1,1, ... , 1)T. For convex domains 
whose boundary is Coo with nonzero curvature everywhere, it is known [4] that 
(1, 1,.. ., 1)T is the only eigenvector of I - Kh. Equation (3.6) has a solution if and 
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only if 

(3.7) Lhuh I ker(I -K 

Define 

AC(JFh) = { F: 17 RI f is absolutely continuous on the 

open curve ri, 1 < i < n (h). 

We let Ph be a projection operator from A C(h) into Vh defined by 

(Phf )(X) = f (XI) Vxe T1, i = 1, 2, ..., n. 

It is easy to see that 

Khw = PhKW, Lhw = PhLW V w E Vh. 

We also define the projection operator Ph from L2(r) into Vh by 

PhW = Wh e Vh, w e L 2) 

where wh is the unique element in Vh satisfying 

KW Vh) I K h) VVh e Vh 

Then, 

Ph = Ph on Vh. 

We now study the discretized mathematical programming problem 

Min | Yh - Zd || + NUh, Uh) 
(3.8) (.Vh, uh) 

for all (Yh I Uh) E Vh X Vh satisfying constraints (3.6), (3.7). 

We repeat the max-min duality argument of Section 2: Let Xh E Vh be a 
Lagrange multiplier and solve 

(3.9) Min IYh - Zd || + KNUh Uh) + (Xh (I Kh)Yh LhUh)- 
(.Yh b Uh ) C Vh X Vh 

The unique minimizing solutions are 

(3.10) Yh(Xh) = 
PhZd- (I- Kh*)Xh, 

(3.11) Uh(Xh) = 2(PhNPh) LhXh = 2PhN PhLhXh = 2PhN LhXh- 

We obtain the dual problem 

(3.12) Max JA - 4ah(Xh, Xh) + Oh(Xh) + II(' - Ph)zd 
Xhe Vh 

where for w, w1, w2 E Vh the forms ah and 0h are defined by 

(3.13) ah (Wl, W2) ((I - Kh*)wl, (I - Kh*)w2) + (PhN- Lhwl, Lhw2), 

(3.14) Mh(w) = 2(w, (I- Kh)PhZd). 

Since the last term II(I - Ph)Zd ii2 in (3.12) is just a constant, we drop it and redefine 

(3.15) JA- - 4ah(Xh, Xh) + 21h(Xh). 
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LEMMA 3.1. There exists a constant C > 0 such that 

IIPhV - PhVII < ChIIVIlH1(X) 

for all v E H1 and all h > 0. 

Proof. Let v' E L2(F ) be the weak derivative of v E H'(F). Denote v(x) 
(Phv)(x) and b(x) (Phv)(x). By the definitions of Ph and Ph' we have, for x c r, 

v(x)= v (a)da, except perhaps at the end points of FI, 

v (x) = v (x,), x, is the midpoint of r, 

where I, I= length of r, . 

Let (a, a1) be the two end points of F,. Then on 1,, we have 

lV )I v= 1f()d () |= 
do j vxr[v(a)-v(xl)]doa 

I~~~~~ (x) 
- 

(x I r = fi t J v(X)d]d 

= I f [J | V'(T)ddT' - v(2)dr ]da 

(F I 1- r,| ]) [ ~ lI~ f 
1 

V'(r) d'r 
do < (k /1 ~ ~~V'(T) 2dTrl/do 

(h)1/2 1 ~fv()2c] h ( 1/41 v()2c~] 

Hence, 

|Phv - Phv2= 
I 

(x) -v(x) | I r h| 2'(T) |d|| 

axIF , H .E 2 1 h maxj|rf | 
j 

| Hvj1< Ch2|| vI|| 
i 

COROLLARY 3.2. There exists a constant C > 0 such that for all h > 0 and any 
W E Vh' 

|PhK*w - = |wPhK *w - PhK*w| Ch||w||, 

|| Ph Lw - LhW| =|Ph Lw - Ph Lw < Ch || w ||. 

Proof. We just note that 

Kh* = PhK*, L = Ph L 

and that K *, L: H0(F) -* H'(F) are continuous. E 

LEMMA 3.3. There exists Y3 > 1 such that 

(3.16) yw- W ah(w,w) 1 Y311 W 11 V w E Vh, for all h > 0 sufficiently small. 

Proof. For Wh E Vh, we have 

(I - K*)wh Ph(I- K*)Wh = Ph(I- K*)Wh +?(Ph - Ph)(I- K*)Wh. 
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But 

(h Ph)(I- K*)wh - (h- Ph)K*wh, 

so 

j(h Ph)(I- - K*)Wh| = |(Ph - Ph)K*wh -<- ChjIwh II, 

by Corollary 3.2. 
Similarly, 

Lhwh =PhLWh = PhLWh + (Ph - Ph)Lwh 

and 

-(Ph Ph) LWh | Chwl Wh 11 - 

The rest of the proof follows from the proof of Lemma 2.3 and the fact that Ph is the 
identity operator on Vh. LI 

LEMMA 3.4. Let wh e Vh, w E L2(F) and Wh tend to w weakly in L2(F). Then 

(3.17) lim 9h(Wh) = 9(W). 
h I O 

Proof. Routine verification. C] 

COROLLARY 3.5. The dual problem (3.12) has a unique maximizing solution X*h. 
Furthermore, yh(Xh) and uh(X*h) in (3.10), (3.11) corresponding to X*' are the unique 
solution of the discretized problem (3.8). 

4. Convergence and Error Estimates. Let a, ah, 0, oh and Vh be defined as before. 
We wish to establish convergence and error estimates. We argue along the line of 
perturbations; see [3], for example. 

Throughout this section, we let C > 0 be a generic constant independent of h. 
The optimal multipliers X* and X*h for problems (2.16), (3.12), respectively, are 

solutions to the following variational equations: 

(4.1) a(X*, p) = 9(,u) V E L (e), 

(4.2) ah(Xh It1h) 
= OhO(Lh) VIh E Vh. 

Note that ah and Oh are only defined on Vh. 

For any Ph E Vh, we have 

a(X* - X*hIh) = a(X*, Ph) -a(hh) 

(4.3) = 90'h) + [ah(AXh, /1h) 
- 

Oh(/'h)] 
- a(iXh, /h) 

= (9 - Oh)(Ph) -(a - ah)(XAh Ih). 

Thus, 

a(X* - X*, A* - Ah) = a( - Ah, X* h) + a(X Xh, h h) 

a(X* - X - Ph) + [(9 - 
Oh)(Ph 

- Xh) -(a - ah)(Xhl' th -Xh)]) 
By Lemma 2.3, 

-'IIX* 
- Ash< a(a* - a*h, X* - hVh) 

( ) < Y~~2ll Ah 11* II Ph || O + O(h)(XAh 
- 

h)l 

+ I(a - ah)(Xhl Xh - Ph)| I Vh E Vh- 
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From (4.2), (3.16), (3.14) it is easy to see that there is C > 0 such that 

(4.5) M*j1< C V h>0. 

In (4.2), we use 

(4.6) I h =Ph 

Let 

(4.7) 'l 1 @ S )( h 
2h= -(a - ah)(IX*h, /*h -y)1 

By (4.5) and (4.6), X*h has a weak limit in L2(F), and 1h has a strong limit A*. 
Using Lemma 3.4, we get 

(4.8) hrn -1h = 0. 
h I O 

We note that 

(a - ah)(XhIXh Ph) 

=(' - K*)XAh, (I - K*)(X*h- + (N-LMh, L(Xh h 
- 

Ph)) 

-((I' - K)X (I - - - (PhN LhX*h, Lh(X*h - h)) 

(4.9) ([(Ph I )K +=(Ph Ph)K*] Xh (I- K*)(A* 
+ ((I - K')X'h, [(I - Ph)K +(Ph - Ph)K *](X*h - Ph)) 

+((N-'L - PhN- Lh) X*, Lh(A,;- 

+ (PhN LhXh, [(I- Ph)L +(Ph- Ph)L](h - - 

Now using the property that for M = K * or L, 

(1 (I - Ph) MVh = inf !| Mvh - Wh 11 < ChIl MVh 11 Hl (4.10) Wh C Vh 

< Ch|| Vh | -> 0 as h I0, for any bounded sequence Vh E Vh, 

and that 

(N-1L - PhN-'Lh) X*hM 

(4.11) =I(I - Ph)N 'LX*h+ PhN'(I- Ph)LX*h+ PhN'(Ph- Ph)LX* 

< Ch|| LX* ||H1 < Ch| h || 0 as h I0, 

for the bounded sequence X*h, as well as Lemma 3.1, we obtain 

(4.12) lim -2h = lim 1(a - 
ah)(Xh, Xh - Ph) O0 

From (4.4) we thus have 

h 2 2 2X* h 
I 

1 Xh | - Y2-( lh + 2h) 

yielding 

(4.13) |A A||XI* - Ml - I'hH* - + 4X- Ph + Y2(E1l + E2h)] 
hy the quadraticsolutionformul.2 

by the quadratic solution formula. 
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By (4.8) and (4.12) it is easy to see that the right-hand side above tends to 0 as 

h 0. 
We summarize the above in 

THEOREM 4.1. We have 

lim X*' = X* strongly in L2(r). 0 
h O 

COROLLARY 4.2. We also have the convergence of the optimal state and control, 

urnh (Xsh) = Y X tim Uh(Ah) = ( h 

Proof. This is a consequence of Theorem 4.1, (2.15), (3.10), (3.11) and Corollary 
3.2. El 

Next, we study error estimates. 
Assume that Zd in (1.1) lies in H'(F). Then X* E H'(F) by Theorem 2.5. From 

(3.2) and (4.6), we have 

(4.14) 11 A* - thI -<- ChII/X*IlH1(F). 

To obtain IIX* - X*', it is important to know the orders of magnitude of '1h and E2h 

in (4.7): 

E1h = (6 - Oh)(Xh - Ih) = 2(XKh - 11h, (I- K)Zd - (I- Kh)Phzd) 

= 21([(' - K*) - Ph(I - K -)](/Xh 
- 

h)J, Zd) 

(4.1) = 2K(K* - PhK -)(h /h)I Zd) 

= 2((I - Ph)K (Xh - /h), Zd) 

From (4.10), we obtain 

(4.16) E1h < 2Ch1 Xh -1h IIZdl 0(h). 

Similarly, from (4.9), (4.10) and (4.11) and Corollary 3.2, 

(4.17) -2h = I(a - ah)( Xh I 'h) | h Ch /X' /X hh =h 0(h). 

Using (4.14), (4.16) and (4.17) on the right of (4.13), we get 

(4.18) || * - |< C'h"1/2 1 X* 111h 
2 

+ Cy2hI A*IIH1( ) 
for some C' > 0 depending on X*, X*h and Zd only, independent of h. Therefore, 

IIA*-hl C /[|A - 1/ 2II - h 1/21 + CY2hIIX*IIH1(F). 

By (4.13), 

-* - (c C h1/2? + Cy2 )h 11 X*I11(F< 0. 

Thus, for h sufficiently small, we obtain 

-l A*-A 1/2 -<- C/h1/2 + [C/2h + 4(C'C1/2 + Cy2 )hIX*IIH(F)l] 1/2} 

- 0(hl/2), 

(4.19) 11 A* - A*h= 0(h), 

the optimal rate of convergence with piecewise constant elements Vh. 
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By (2.15), (3.10), (3.11), (4.12), (4.19) and (3.2), we obtain 

(4.20) |YXA* Yh(Xh) || = O(h), 

(4.21) || UA* - Uh(XAh) ||= O(h). 

THEOREM 4.3. Assume that Zd e H'(F). Then the BEM and duality algorithm of 
Section 3 yield the optimal rate of convergence (4.19), (4.20) and (4.21). Furthermore, 
we have 

(4.22) |-JA = O(h 2). O 

5. Numerical Results. We consider the following examples. Let 
Q = {(r, 9) I r < 1/3} 

be a disk centered at the origin with radius 1/3, and let 

zd(O) = 4cos30 + 1 on F; F = 10 1 6 < 2)T}2 

F is discretized into n equal arcs, each with arc length 4 - (2v/n). 
Example 1. Let 

(5.1) N = I on 2(I) 

and consider 

(5.2) Min y( 3,) -Zd(6) + U (2)] d6 

subject to 

J + [r a y(r, 0) + 1 82y(r 6) = 0 onQ. 

a 
+y(r,)Ir=1/3 = u(6). 

The integral (5.2) is discretized as 

(5.3) iE)[|Yh( 3 Ph,i) Zd(4Ahl) 2 + u h(i)] 3 [(h) 

and the integral equation (2.6) is discretized to 

(5.4) Yh( 3 hi) 
- f 

3 hi + 
L q)Uh((Phi) , 

(5.4) 
3 ~~j=1 j==1 

i = 1,2,...,n 
where 

1~ n2, i =1 2, .... In(h), 

= - i, j 1,=2...,n(h), n 

(5.5) qIhJ Iln ~e"'Ph 1 elO 1d6, ij =1, 2,..., n(h), 
77 3 3 3 

The discretized problem is then solved by the max-min duality method as in Section 
4. 
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Because of the lack of exact solutions to make direct comparisons, we can only 
estimate the rate of convergence of ]Ui - UhHLII - YhH and J - Jx*jj by compar- 
ing two successive solutions. 

In Figure 3 we plot the logarithm of errors by calculating the maximum difference 
of successive solutions at nodes: 

max IYh ( 2h,i) Y2h (G2h,i) 
I1<i <n(2h) 

for h - >( - ~and ] 
3 [8 16 32 64' 128' 256 512]' 

respectively. See the first column of Table 1 for these values. 

TABLE 1 

Rate of convergence 

rror of solutions 

?of nodes 

8 1.1952 x 102 2.6843 x 10- 1.8542 x 10-3 

16 8.0882 X 10-5 3.6740 X 10-4 1.2548 X 10-5 

32 7.4117 X 10-5 3.3701 x 10-4 1.1499 x 10-5 

64 2.8951 X 10-5 1.2964 x 10-4 4.4915 x 10--6 

128 8.4762 x 10-6 3.7751 x 10-5 1.3150 x 10-6 

256 2.2674 x 10-6 1.0085 X 10-5 3.5177 x 10-7 
512 5.8421 X 10 2.5969 x 106 9.0635 x 1o 
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The slope of the line passing the last 3 points is measured to be -1.93. This is 
consistent with the superconvergence rate 0(h 2) proved in [4]. As a result (cf. [4]), 
the s-norm convergence rate 0( h) follows by linear interpolation. This agrees with 
our estimate (4.20). 

In Figure 4 we do the same for with, t 

max -U (:hI)I 
1 i n(2 h)I 

h(2i) 2(2hi 

The slope is again measured to be -1.93. See the second column of Table 1. 
In Figure 5 we plot the logarithm of errors of Jui by calculating 

- jX~h 

for the same h values as above. The slope of the line is -1.93; this verifies the 
theoretical estimate 0(h 2 )given in Theorem 4.3. See column 3 of Table 1 for values. 

We wish to remark that the experimental rate of convergence hinges almost 
entirely on the order of accuracy of approximating the weakly singular integral (5.5). 
At first we have tried to evaluate qOh) by the Simpson rule. It still yields good 
accuracy, but j~h converges with a rate of only 0(h 133 )-quite unsatisfactory for the 
purpose of our paper. Afterwards we decided to evaluate qO) differently (whose 
integrand contains a logarithmic singularity) by using a series expansion formula, 
and evaluate qj), j # i, still by Simpson's rule. This immediately improves the rate 
to 0(hl .93) for the convergence of J i. 
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Example 2. To test whether our computations are correct, we consider the same 
example as above, except that now we let. 

(5.6) N = aeI 

with a- - 10, 1, 1/10, 1/102 and 1/103, and h = 27T/64 throughout. 
Note that 

g(r, ) = 4r3cos 30 + 1 

is the exact solution of the problem 

{AY(r,) =0, 

a ~~~4 
|y9(r, O)1[r1/3 cos 30 = ( ) 

I 
3 t = ? cos39 + 1 = Zd(G). 3 27 

Thus, as a -O 0 in (5.6), (59, i') should tend to (5, i). O 
This is confirmed in Figures 6 and 7. See the data at selected nodes in Tables 2 

and 3. 
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TABLE 2 
Values of ' (O) for different a 

a70 \ /4 3 f/4 9f/8 13 f/8 

10 0.10002 x 101 0.99987 x 100 0.10001 x 101 0.99993 X 100 0.99983 x 100 

1 0.10018 x 101 0.99873 x 100 0.10013 x 101 0.99931 x 100 0.99834 x 100 

lo-, l 0.10162 x 101 0.98855 x 100 0.10114 x 101 0.99381 x 100 0.98505 x 100 

lo-2 0.10816 x 101 0.94229 x 100 0.10577 x 101 0.96877 x 100 0.92460 x 100 

lo-, 0.11370 x 101 0.90314 x 100 0.10969 x 101 0.94758 x 100 0.87345 x 100 

(?, O0.11481 x 101 0.89524 x 100 0.11048 x 101 0.94331 X 100 0.86313 x 100 

TABLE 3 
Values of u0 ( ) for different 0 

\0. 
a 0 ? /4 37r/4 97r/8 13 ff/8 

10 0.16388 x 10-2 -0.11588 x lo-2 0.11588 x 10- -0.62713 x 10-3 -0.15140 x lo-2 

1 0.16209 x 10- -0.11461 x 10-I 0.11461 x 10- -0.62029 x 10-2 -0.14975 x 10-' 

101 0.14615 x 10? -0.10334 x 10? 0.10334 X 10? -0.55929 x 10-' -0.13503 x 100 

10-2 0.73689 X 10? -0.52106 x 10? 0.52106 x 10? -0.28200 x 10? -0.68080 x 10? 

10- 0.12368 x 101 -0.87457 x 10? 0.87457 x 10? -0.47331 x 10? -0.11427 x 101 
0 

0.13333 x 101 -0.94281 x 100 0.94281 x 10 -0.51024 X 100 -0.12328 x 101 

6. Miscellaneous Remarks. (1) For our problem (1.1), (1.2), if we were to treat it 
numerically by solving a system of equations as in [6], the amount of work would be 
much larger. In this case, BEM has an advantage of roughly 0(n) operations versus 
0(n 2) operations using FEM. The saving is substantial. 

(2) Our method mentioned here can be immediately extended to treat the 
following problem [6]: 

Min J(u) = y(x) - Zd(X) I dx + (Nu, U)L2(r) 
u 13L2(r) 

subject to 

(6.1) Ay = f on Q, f given on Q, 
ay Y=u onr, av 
f u(x)do =ffdx. 

However, Q must now also be discretized in order to evaluate JQ f ( ) v (t, x) d(. The 
efficiency of the BEM is lost to some extent. 
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(3) For (6.1), one can also use the boundary integral equation formulation to 
obtain regularity of (5', ii), as we have done in Theorem 2.5. 

(4) Although for convenience we have only used piecewise constant elements (in 
Section 3), it is understood that any (r, s)-system of finite element spaces Vh on F 
can be used to approximate the variational equation (4.1) and give error estimates. 
But generally the nice and simple geometric relation (3.3) is lost. 

(5) Many restrictions such as (diameter i) < 1, convexity of Q and CO-smooth- 
ness of F can be removed or relaxed without causing any computational and 
theoretical difficulty. 

For elliptic linear quadratic problems with Dirichlet control (as opposed to 
Neumann control here), how does one use BEM to study them? This will be 
discussed in Part II. 
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